A Study of Trimethylsilane (3MS) and Tetramethylsilane (4MS) Based α-SiCN:H/α-SiCO:H Diffusion Barrier Films

نویسندگان

  • Sheng-Wen Chen
  • Yu-Sheng Wang
  • Shao-Yu Hu
  • Wen-Hsi Lee
  • Chieh-Cheng Chi
  • Ying-Lang Wang
چکیده

Amorphous nitrogen-doped silicon carbide (α-SiCN:H) films have been used as a Cu penetration diffusion barrier and interconnect etch stop layer in the below 90-nanometer ultra-large scale integration (ULSI) manufacturing technology. In this study, the etching stop layers were deposited by using trimethylsilane (3MS) or tetramethylsilane (4MS) with ammonia by plasma-enhanced chemical vapor deposition (PECVD) followed by a procedure for tetra-ethoxyl silane (TEOS) oxide. The depth profile of Cu distribution examined by second ion mass spectroscopy (SIMs) showed that 3MS α-SiCN:H exhibited a better barrier performance than the 4MS film, which was revealed by the Cu signal. The FTIR spectra also showed the intensity of Si-CH₃ stretch mode in the α-SiCN:H film deposited by 3MS was higher than that deposited by 4MS. A novel multi structure of oxygen-doped silicon carbide (SiC:O) substituted TEOS oxide capped on 4MS α-SiC:N film was also examined. In addition to this, the new multi etch stop layers can be deposited together with the same tool which can thus eliminate the effect of the vacuum break and accompanying environmental contamination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects

Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs), with a low dielectric constant (k-value) and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theore...

متن کامل

A synthesis of γ-trifluoromethyl α,β-unsaturated γ-butyrolactones using CF(3)SiMe(3) as a trifluoromethylating agent.

A general synthesis of γ-trifluoromethyl α,β-unsaturated γ-butyrolactones is described. The fluoride-catalyzed nucleophilic addition of a trifluoromethyl (CF3) group generated from (trifluoromethyl)trimethylsilane (CF3SiMe3, Ruppert-Prakash reagent) to a masked maleic anhydride 1 (cyclopentadiene-maleic anhydride adduct) provides the corresponding adducts 2 with high stereoselectivity. The γ-tr...

متن کامل

The Role of Peroxisome Proliferator Activator Receptor Alpha in Cerebral Ischemia-Reperfusion Injury; a Review Study

Peroxisome proliferator-activated receptor alpha (PPAR-α), which belongs to the nuclear receptor family of ligand-activated transcription factors, was first described as gene regulators for metabolic pathways including lipid metabolism, insulin sensitivity, and glucose homeostasis. Were raised. This nuclear receptor is widely expressed in various tissues, providing a wide range of effects to st...

متن کامل

Development and Characterization of a Novel Edible Film Based on Carboxymethylcellulose-Beta-Glucan Containing Inulin: Mechanical, Barrier and Structural Characteristics

Background and Objectives: Bioactive packaging systems (coatings/films) are novel technology concepts in food industries. Bioactive compounds such as antioxidants, vitamins, probiotics and prebiotics are designed to be included in coatings or coating materials that directly affect health of consumers. The aim of this study was to assess feasibility of producing prebiotic edible films by adding ...

متن کامل

A Numerical Study of KPZ Equation Based on Changing its Parameters

In this article we investigate the behaviour of the scaling exponentsof KPZ equation through changing three parameters of the equation. Inother words we would like to know how the growth exponent β and theroughness exponent α will change if the surface tension ν , the averagevelocity λ and the noise strength γchange. Using the discrete form of theequation , first we come to the results α = 0.5 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012